Un nuevo esquema terapéutico con Jusvinza induce mejoría clínica y reduce moléculas asociadas con la inflamación en pacientes con Artritis Reumatoide y Espondilitis Anquilosante. Reporte de tres casos
Texto completo:
PDFResumen
Introducción: La Artritis Reumatoide y la Espondilitis Anquilosante son enfermedades autoinmunes, mediada por la activación de células T CD4+ y caracterizadas por altos niveles de moléculas asociados con la inflamación.
El uso de ligandos peptídicos modificados (APL, del inglés altered peptide ligand) constituye una terapia atractiva para el tratamiento de la Artritis Reumatoide y la Espondilitis Anquilosante.
Jusvinza tiene como principio activo un APL, derivado del auto-antígeno denominado proteína de estrés celular de 60kDa. Los estudios preclínicos y los resultados de las investigaciones clínicas en Artritis Reumatoide y COVID-19 han demostrado que Jusvinza tiene actividad anti-inflamatoria; y es capaz de inducir mecanismos asociados con la restauración de la homeostasis inmunológica.
Objetivo: Describir la seguridad, la evolución clínica, así como las variaciones de moléculas asociadas con la inflamación en pacientes con Artritis Reumatoide y Espondilitis Anquilosante, tratados con Jusvinza en un nuevo esquema terapéutico.
Presentación de los casos: se incluyeron tres pacientes, los cuales fueron tratados con Jusvinza durante tres meses: dos pacientes con Artritis Reumatoide y un paciente con Espondilitis Anquilosante. Se tomaron muestras de sangre antes y durante el tratamiento, así como después de culminado el mismo, para cuantificar los niveles de citocinas, anticuerpos anti-péptidos cíclicos citrulinados y factor reumatoide. Los pacientes presentaron una mejoría clínica, asociado con la disminución de las citocinas pro-inflamatorias. Además, los niveles de los anticuerpos disminuyeron durante el tratamiento con Jusvinza.
Conclusiones: El nuevo esquema terapéutico de Jusvinza fue seguro e indujo una mejoría clínica en los pacientes, asociado con la disminución de citocinas proinflamatorias. Estos resultados demuestran las potencialidades de Jusvinza para la Artritis Reumatoide y la Espondilitis Anquilosante.
Palabras clave
Referencias
Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: When a chromosome makes the difference. Nat Rev Immunol [Internet]. 2010;10(8):594–604. Available from: http://dx.doi.org/10.1038/nri2815
Mellado M, Martínez-Muñoz L, Cascio G, Lucas P, Pablos JL, Rodríguez-Frade JM. T cell migration in rheumatoid arthritis. Front Immunol. 2015;6(JUL).
Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta [Internet]. 2016;455:161–71. Available from: http://dx.doi.org/10.1016/j.cca.2016.02.010
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet [Internet]. 2017;389(10086):2328–37. Available from: http://dx.doi.org/10.1016/S0140-6736(17)31472-1
Braun J, Sieper J. [Ankylosing spondylitis. Target treatment criteria]. Z Rheumatol [Internet]. 2009;68(1):30–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20498207
Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol [Internet]. 2014;57(1):44–51. Available from: http://dx.doi.org/10.1016/j.molimm.2013.07.013
Tam LS, Gu J, Yu D. Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol [Internet]. 2010;6(7):399–405. Available from: http://dx.doi.org/10.1038/nrrheum.2010.79
Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis - Insights into pathogenesis. Nat Rev Rheumatol [Internet]. 2016;12(2):81–91. Available from: http://dx.doi.org/10.1038/nrrheum.2015.133
Duskin A, Eisenberg RA. The role of antibodies in inflammatory arthritis. Immunol Rev. 2010;233(1):112–25.
Wu CY, Yang HY, Lai JH. Anti-citrullinated protein antibodies in patients with rheumatoid arthritis: Biological effects and mechanisms of immunopathogenesis. Int J Mol Sci. 2020;21(11):1–23.
Kim J-O, Lee J-S, Choi J-Y, Lee KH, Kim Y-B, Yoo D-H, et al. The relationship between peripheral arthritis and anti-cyclic citrullinated peptide antibodies in ankylosing spondylitis. Jt Bone Spine. 2013;80(4):399–401.
Wilbrink R, Spoorenberg A, Verstappen GMPJ, Kroese FGM. B cell involvement in the pathogenesis of ankylosing spondylitis. Int J Mol Sci. 2021;22(24).
Garner R, Ding T, Deighton C. Management of rheumatoid arthritis. Med (United Kingdom). 2014;42(5):237–42.
Wanders A, Van Der Heijde D, Landewé R, Béhier JM, Calin A, Olivieri I, et al. Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: A randomized clinical trial. Arthritis Rheum. 2005;52(6):1756–65.
Van Der Heijde D, Sieper J, Maksymowych WP, Dougados M, Burgos-Vargas R, Landewé R, et al. 2010 Update of the international ASAS recommendations for the use of anti-TNF agents in patients with axial spondyloarthritis. Ann Rheum Dis. 2011;70(6):905–8.
Rosenblum H, Amital H. Anti-TNF therapy: Safety aspects of taking the risk. Autoimmun Rev [Internet]. 2011;10(9):563–8. Available from: http://dx.doi.org/10.1016/j.autrev.2011.04.010
Dekker L., Armbrust W., Rademaker C. M., Prakken B. KW. Safety of anti-TNF alpha therapy in children with juvenile idiopathic arthritis. ClinExpRheumatol. 2004;22(2):252–8.
Tack CJ, Kleijwegt FS, Van Riel PLCM, Roep BO. Development of type 1 diabetes in a patient treated with anti-TNF-α therapy for active rheumatoid arthritis. Diabetologia. 2009;52(7):1442–4.
Ichim TE, Ichim TE, Zheng X, Zheng X, Suzuki M, Suzuki M, et al. Antigen-specific therapy of rheumatoid arthritis. Expert Opin Biol Ther [Internet]. 2008;8(2):191–9. Available from: http://informahealthcare.com/doi/abs/10.1517/14712598.8.2.191%0Apapers3://publication/doi/10.1517/14712598.8.2.191
Lorenzo N, Altruda F, Silengo L, del Carmen Dominguez M. APL-1, an altered peptide ligand derived from heat-shock protein, alone or combined with methotrexate attenuates murine collagen-induced arthritis. Clin Exp Med. 2017;17(2):209–16.
Dominguez MDC, Lorenzo N, Barbera A, Darrasse-Jeze G, Hernández MV, Torres A, et al. An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant-induced arthritis. Autoimmunity. 2011;44(6):471–82.
Corrales O, Hernández L, Prada D, Gómez J, Reyes Y, López AM, et al. CIGB-814, an altered peptide ligand derived from human heat-shock protein 60, decreases anti-cyclic citrullinated peptides antibodies in patients with rheumatoid arthritis. Clin Rheumatol. 2019;38(3):955–60.
Barberá A, Lorenzo N, van Kooten P, van Roon J, de Jager W, Prada D, et al. APL1, an altered peptide ligand derived from human heat-shock protein 60, increases the frequency of Tregs and its suppressive capacity against antigen responding effector CD4 + T cells from rheumatoid arthritis patients. Cell Stress Chaperones. 2016;21(4):735–44.
Prada D, Gomez J, Lorenzo N, Corrales O, Lopez A, Gonzalez E, et al. Phase I Clinical Trial with a Novel Altered Peptide Ligand Derived from Human Heat-Shock Protein 60 for Treatment of Rheumatoid Arthritis: Safety, Pharmacokinetics and Preliminary Therapeutic Effects. J Clin Trials. 2018;08(01):1–11.
Jusvinza, Emergency Use Authorization for the treatment of patients with COVID-19 (Autorizo de Uso de Emergencia a Jusvinza, para el tratamiento de pacientes con COVID-19)_ [Internet]. Available from: https://www.cecmed.cu/covid%0219/aprobaciones/jusvinza-cigb-258-1.%0D
Venegas-Rodriguez R, Santana-Sanchez R, Peña-Ruiz R, Bequet-Romero M, Hernandez-Cedeño M, Santiesteban-Licea B, et al. CIGB-258 Immunomodulatory Peptide : Compassionate Use for Critical and Severe COVID-19 Patients. Austin J Pharmacol Ther. 2020;8(1):1–6.
Hernandez-Cedeño M, Venegas-Rodriguez R, Peña-Ruiz R, Bequet-Romero M, Santana-Sanchez R, Penton-Arias E, et al. CIGB-258 , a peptide derived from human heat-shock protein 60 , decreases hyperinflammation in COVID-19 patients. Cell Stress Chaperones. 2021;26(3):515–25.
Venegas-Rodríguez R, Serrano-Díaz A, Peña-Ruiz R, Santana-Sánchez R, Hernández-Cedeño M, Rittoles Navarro A, et al. Jusvinza, an anti-inflammatory drug derived from the human heat-shock protein 60, for critically ill COVID-19 patients. An observational study. PLoS One. 2023;18(2):e0281111.
Domínguez M del C, Serrano A, Hernández-Cedeño M, Martínez G, Guillén G. A peptide derived from HSP60 reduces proin fl ammatory cytokines and soluble mediators : a therapeutic approach to in fl ammation. Front Inmunol. 2023;(April):1–10.
Rubio Ortega R, Rodríguez Moya VS, Leiva Machado M, Domínguez Dorta M del C. Uso del péptido CIGB-258 en un paciente pediátrico con neumonía grave por SARS-CoV-2. Rev Cuba pediatr [Internet]. 2021;93(3):e1572–e1572. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75312021000300017%0Ahttp://www.revpediatria.sld.cu/index.php/ped/article/view/1572
Rodríguez RV, Díaz AS, Ruiz RP, Sánchez RS, Navarro AR. El tratamiento con Jusvinza disminuye la hiperinflamación y la hipercoagulación en pacientes críticos con la COVID-19. Rev Cuba Med Mil. 2021;50(4):e02101675.
Dissanayake H, Seneviratne S. Liver involvement in dengue viral infections. ;28. Rev Med Virol. 2018;28.
Yang R, Feng J, Wan H, Zeng X, Ji P, Zhang J. Liver injury associated with the severity of COVID-19: A meta-analysis. Front Public Heal. 2023;11.
Yamazaki H, Kuroiwa T, Shinmura K, Yukioka M, Murata N. Prevalence of anti-cyclic citrullinated peptide antibodies in patients with spondyloarthritis: A retrospective study. Mod Rheumatol [Internet]. 2021;31(2):458–61. Available from: http://dx.doi.org/10.1080/14397595.2020.1761070
Gemcioglu E, Erten S. Clinical and laboratory features of patients with undifferentiated spondyloarthritis and ankylosing spondylitis. Rev Med Chil. 2021;149(10):1423–9.
Madhok. Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of desease activity. Ann Rheum Dis. 1993;52(3):232–4.
McInnes I, Buckley C, Isaacs J. Rheumatoid arthritis. Cytokines in rheumatoid arthritis - shaping the immunological landscape. Rheumatol Nat Rev. 2015;11:349–5.
Chizzolini C, Dayer J, Miossec P. Cytokines in chronic rheumatic diseases: is everything lack of homeostatic balance? Arthritis Res Ther. 2009;11:246.
Van Gestel A, Prevoo M, Van’t Hof M. Development and validation of the European league against rheumatism response criteria for rheumatoid arthritis. Arthritis Rheum. 1996;39:34–40.Jerram S, Butt S, Gadsby K,
Deighton C. Discrepancies between the EULAR response criteria and the NICE guidelines for continuation of anti-TNF therapy in RA: A cause for concern? Rheumatology. 2008;47(2):180–2.
Van Gestel A, Haagsma C, Van Riel P. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 1998;41:1845–50.
Gratacós J, Collado A, Filella X, Sanmartí R, Cañete J, Llena J, et al. Serum cytokines (Il-6, Tnf-α, Il-1β and Ifn-γ) in ankylosing spondylitis: A close correlation between serum il-6 and disease activity and severity. Rheumatology. 1994;33(10):927–31.
Bal A, Unlu E, Bahar G, Aydog E, Eksioglu E, Yorgancioglu R. Comparison of serum IL-1β, sIL-2R, IL-6, and TNF-α levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol. 2007;26(2):211–5.
Pedersen SJ, Sørensen IJ, Garnero P, Johansen JS, Madsen OR, Tvede N, et al. ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNFα inhibitors. Ann Rheum Dis. 2011;70(8):1375–81.
Falkenbach A, Herold M. In ankylosing spondylitis serum interleukin-6 correlates with the degree of mobility restriction, but not with short term changes in the variables for mobility. Rheumatol Int. 1998;18(3):103–6.
Park MC, Lee SW, Choi ST, Park YB, Lee SK. Serum leptin levels correlate with interleukin-6 levels and disease activity in patients with ankylosing spondylitis. Scand J Rheumatol. 2007;36(2):101–6.
Su Q-Y, Zheng J-W, Yang J-Y, Zhang T-Y, Song S, Zhao R, et al. Levels of Peripheral Th17 Cells and Th17-Related Cytokines in Patients with Ankylosing Spondylitis: A Meta-analysis. Adv Ther. 2022;39(10):4423–39.
Mei Y, Pan F, Gao J, Ge R, Duan Z, Zeng Z, et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol. 2011;30(2):269–73.
Wang X, Lin Z, Wei Q, Jiang Y, Gu J. Expression of IL-23 and IL-17 and effect of IL-23 on IL-17 production in ankylosing spondylitis. Rheumatol Int. 2009;29(11):1343–7.
Agrawal S, Misra R, Aggarwal A. Autoantibodies in rheumatoid arthritis: Association with severity of disease in established RA. Clin Rheumatol. 2007;26(2):201–4.
Ateş A, Kinikli G, Turgay M, Akay G, Tokgöz G. Effects of rheumatoid factor isotypes on disease activity and severity in patients with rheumatoid arthritis: A comparative study. Clin Rheumatol. 2007;26(4):538–45.
Berglin E, Johansson T, Sundin U, Jidell E, Wadell G, Hallmans G, et al. Radiological outcome in rheumatoid arthritis is predicted by presence of antibodies against cyclic citrullinated peptide before and at disease onset, and by IgA-RF at disease onset. Ann Rheum Dis. 2006;65(4):453–8.
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2024 María del Carmen Domínguez Horta
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.