Epigenética y enfermedades autoinmunes sistémicas

Ana María Torres Lima, Ana Yolanda Rodríguez Torres

Texto completo:

PDF HTML

Resumen

La epigenética, como ciencia que estudia la  modificaciones heredables en la función del genoma que se realizan sin cambios  en la secuencia del ADN, está atrayendo una atención creciente entre la comunidad científica, por su contribución en la patogenia de un grupo numeroso de enfermedades, en sus enfoques terapéuticos e incluso en la prevención de las mismas. Las enfermedades autoinmunes sistémicas  tienen una etipatogenia multifactorial compleja y en los últimos años las evidencias tanto clínicas, como experimentales, de la influencia que ejercen los cambios en el epigenoma, en estas entidades clínicas, son numerosas y pretendemos abordarlas en esta serie de artículos de revisión.

Palabras clave

epigenética; enfermedades autoinmunes; enfermedades sistémicas

Referencias

Watson J. D, Crick F. H. C.: Molecular Structure of Nucleic Acids. A Structure for Deoxyribose Nucleic Acid. Nature 1953;171: 737–738

Hernández Fernández R. La expresión de la información genética En Introducción a la Genética Médica Lantigüa Cruz A [y otros].La Habana: Editorial Ciencias Médicas; 2004, 27-41

Bell S.P et all. Epigenetic Gene regulation. En The molecular biology of gene. Watson JD, Gann A, Baker TA, Levine M, Michael TA, Bell S.P, Losick R, Harrison SC. S e v e n t h e d i t i o n California, Berkeley 2014. 694-99

Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 2005;102: 10604–10609

Kaminsky, Z. A. et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 2009;41: 240–245

Baranzini, S. E. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 2010; 464: 1351–1356

Runyon RS, Cachola LM, Rajeshuni N, Hunter T, Garcia M, Ahn R, Lurmann F, Krasnow R, Jack LM, Miller RL, Swan GE, Kohli A,

Jacob¬son AC, Nadeau KC. Asthma discordance in twins is linked to epigenetic modifications of T cells. PLoS One. 2012; 7:e48796

Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet 2012; 12: 1084–1089

Waddington CH. The epigenotype. Endevour 1942; 1: 18-20

Liu I., Li Y., Tollefsbol TO. Gene-environment interactions and epigenetic basis of human diseases. Curr Iss Mol Biol 2008; 10: 25-36

Chong S, Whitelaw E. Epigenetic germline inheritance. Curr Opin Genet Dev 2004; 14: 692-6

Vedove CD, Del Giglio M, Schena D, Girolomoni G. Drug-induced lupus erythematosus. Arch Dermatol Res 2009;301:99–105

Berger, S. L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A. An operational definition of epigenetics. Genes Dev. . 2009; 23, 781–783. doi: 10.1101/gad.1

Bell C.G, Beck S. The epigenomic interface between genome and environment in common complex diseases. Brief. Funct. Genomics 2010; 9: 477-85.

Girardot M, Feil R, Llères D. Epigenetic de¬regulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics. 2013; 5:715-28

Shankar S, Kumar D, Srivastava RK. Epigenetic modifications by dietary phytochemicals: implica¬tions for personalized nutrition. Pharmacol Ther. 2013; 138:1-17

Shukla SD, Lim RW. Epigenetic effects of ethanol on the liver and gastrointestinal system. Alcohol Res. 2013; 35:47-55

Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation.

Neuropsychopharmacol 2013; 38:124-37

Orru, V. et al. Genetic variants regulating immune cell levels in health and disease. Cell 2013; 155: 242–256

Azzi, A. et al. Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat. Neurosci. 2014; 17: 377–382

Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L et al. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol 2014; 15: 777–788.

Obata Y, Furusawa Y, Hase K. Epigenetic modifications of the immune system in health and disease. Immunology and Cell Biology 2015; 93: 226–232; doi:10.1038/icb.2014.114; published online 10 February 2015

Nakamura C, Matsushita I, Kosaka E, Kondo T, Kimura T. Anti-arthritic effects of combined treatment with histone deacetylase inhibitor and low-intensity ultrasound in the presence of microbubbles in human rheumatoid synovial cells. Rheumatology (Oxford) 2008; 47:418–24 [Epub 2008 Feb 2015.

Henikoff S. and Shilatifard A.. Histone modification: Cause or cog? Trends Genet. 2011; 27: 389–396

Girardot M, Feil R, Llères D. Epigenetic de¬regulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics. 2013; 5:715-28

Feinberg AP. Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nature Biotechnology 2010; 28: 1049–1052

Khavari DA, Sen GL, Rinn JL. DNA methylation and epigenetic control of cellular differentiation. Cell Cycle. 2010; 9:3880-3,

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012; 337: 1190–1195.

Shankar S, Kumar D, Srivastava RK. Epigenetic modifications by dietary phytochemicals: implica¬tions for personalized nutrition. Pharmacol Ther. 2013; 138:1-17

Shukla SD, Lim RW. Epigenetic effects of ethanol on the liver and gastrointestinal system. Alcohol Res. 2013; 35:47-55

Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology. 2013; 38:124-37

DeWoskin VA, Million RP. The epigenetics pipeline. Nat Rev Dr Discovery 2013 ;12:661–662 doi:10.1038/nrd4091

Ameres SL, Zamore PD. Diversifying microRNA se¬quence and function. Nat Rev Mol Cell Biol. 2013; 14:475-88

Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L et al. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol 2014; 15: 777–788.

Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014; 15:7-21

Tollefsbol TO. Epigenetics: The New Science of Genetics.En En The molecular biology of gene. Watson JD, Gann A, Baker TA, Levine M, Michael TA, Bell S.P, Losick R, Harrison SC. S e v e n t h e d i t i o n California, Berkeley 2014. pg 672-93

Juvenal GJ. Epigenética: vieja palabra, nuevos conceptos. Revista Argentina de Endocrinología y Metabolismo 2014; 51 (2): 66-74

Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 2007; 8: 286–298

Widschwendter, M. et al .Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J. 2007; 13(1):9-16.

Baylin SB, Jones PA. A decade of exploring the cancer epigenome — biological and translational implications. Nat Rev Cancer 2011; 11: 726-734 doi:10.1038/nrc3130

De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 2012; 21: 655–667

Knopik VS, Maccani MA, Francazio S, McGea¬ry JE. The epigenetics of maternal cigarette smok¬ing during pregnancy and effects on child develop-ment. Dev Psychopathol. , 2012; 24:1377-90

heng ASL, Li MS, Kang W, Cheng VY, Chou J-L, Lau SS. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 2013; 144: 122–133 e9

Pease M, Ling C, Mack WJ, Wang K, Zada G. The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: a systematic review of the literature PLoS One. , 2013; 8:e82619

Vu-Phan D, Koenig RJ. Genetics and epigenetics of sporadic thyroid cancer. Mol Cel Endocrinol 2013; 57:225-39

Pallante P, Battista S, Pierantoni GM, Fusco A. Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol. 2014; 10:88-101

Delgado-Vega, A., Sánchez, E., Löfgren, S., Castillejo-López, C. & Alarcón-Riquelme, M. E. Recent findings on genetics of systemic autoimmune diseases. Curr. Opin. Immunol. 2010.; 22: 698–705

Brooks, W. H., Le Dantec, C., Pers, J. O., Youinou, P., and Renaudineau, Y. Epigenetics and autoimmunity. J. Autoimmun. 2010; (34): J207–J219. doi: 10.1016/j.jaut.2009.12.006

Javierre BM, Richardson B. A new epigenetic challenge: systemic lupus erythematosus. Adv Exp Med Biol. 2011; 711:117-36

Meda F, Folci M, Baccarelli A, Selmi C. The epigenetics of autoimmunity. Cell Mol Immunol. 2011; 8(3): 226–236. Published online 2011 Jan 31. doi: 10.1038/cmi.2010.78

Ballestar E. Epigenetic alterations in autoimmune rheumatic diseases. Nat Rev Rheumatol 2011; 7: 263-271 doi:10.1038/nrrheum.2011.16

Selmi C, Leung PS, Sherr DH, Diaz M, Nyland JF, Monestier M et Mechanisms of environmental influence on human autoimmunity. Environmental Health Sciences National Institute’s expert panel workshop. J Autoimmun 2012; 39: 272–284

Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS. DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 2013; 72: 110–117

Villagra A, Cheng F, Wang H-W, Suarez I, Glozak M, Maurin M. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 2009; 10: 92–100

Weng N-P, Araki Y, Subedi K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol 2012; 12: 306–315

Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 2012; 487:249–253

Gillespie J, Savic S, Wong C, Hempshall A, Inman M, Emery P et al. Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum 2012; 64: 418–422

Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet 2013; 9: e1003678

Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451–455

Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014; 14: 141–153

Nassabeh N. Connective tissue diseases: is epigenetic modification the future of antifibrotic therapy? Nat RevRheumatol 2009; 354–356.

Hemmatazad H, Maciejewska Rodrigues H, Maurer B, Brentano F, Pileckyte M, Distler JH, et al. Histone deacetylase 7 – A potential target for the anti-fibrotic treatment of systemic sclerosis. Arthritis Rheum2009; 60:1519–29

Maciejewska-Rodrigues H, Karouzakis E, Strietholt S, Hemmatazad H, Neidhart M, Ospelt C, et al. Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. J Autoimmun 2010; 35:15–22.

Stanczyk, J. et al. Altered expression of miR-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 2011; 63: 373–381

Gray SG. Perspectives on epigenetic-based immune intervention for rheumatic diseases. Arthritis Res Ther 2013; 15: 207

Picascia A, Grimaldi V, Pignalosa O, et al. Epigenetic control of autoimmune diseases: From bench to bedside. Clin Immunol. 2015; 157(1): 1-15. doi:10.1016/j.clim.2014.12.013

Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518: 337–343

Maciejewska-Rodrigues H, Jüngel A, Gay S. The Role of Epigenetics in Immune Disorders. Ann N Y Acad Sci 2006;1069:322–45

Pan Y, Sawalha AH. Epigenetic regulation and the pathogenesis of systemic lupus erythematosus. Transl Res 2009; 153: 4–10.

Lei W, Luo Y, Yan K, Zhao S, Li Y, Qiu X, et al. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 2009; 38:369–74.

Choong-Gu Lee, Anupama Sahoo, and Sin-Hyeog Im. Epigenetic Regulation of Cytokine Gene Expression in T Lymphocytes. Yonsei Med J. 2009 June 30; 50(3): 322–330. Published online 2009 June 23. doi: 10.3349/ymj.2009.50.3.322

Blank M, Shoenfeld Y, Perl A. Cross-talk of the environment with the host genome and the immune system through endogenous retroviruses in systemic lupus erythematosus. Lupus. 2009 Nov;18(13):1136-43

Gillespie J, Savic S, Wong C, Hempshall A, Inman M, Emery P et al. Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum 2012; 64: 418–422

Aguilar-Arnal L, Sassone-Corsi P. The circadian epigenome: how metabolism talks to chromatin re¬modeling. Curr Opin Cell Biol. 2013; 25:170-6

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2015 Revista Cubana de Reumatología