Therapeutic approaches to osteoporosis

Authors

Keywords:

osteoporosis, primary prevention, secondary fracture prevention, strontium ranelate

Abstract

The purpose of the treatment of osteoporosis is the primary and secondary prevention of fractures. The indications for therapeutic interventions in osteoporosis should be derived from the determination of the absolute risk of fracture, which takes into account the evaluation of risk factors and bone density. To comment on some therapeutic approaches used in osteoporosis, highlighting the mechanism of action of strontium ranelate that increases bone formation and reduces resorption. The most common cause of osteoporosis in women is the decrease in estrogen levels during menopause, which leads to a significant increase in the turnover of bone mass and the consequent imbalance between bone formation and resorption with an increase in bone loss and deterioration of bone structure and strength. Strontium ranelate continues to be an effective and viable pharmacological option in the prevention of vertebral and femoral neck fractures in postmenopausal women and adult men with osteoporosis, in terms of indications, contraindications and a careful evaluation of its effects and risks. It represents an alternative to antiresorptive drugs in case of contraindication, intolerance or failure.

Downloads

Download data is not yet available.

Author Biographies

Angela Lissette Guevara Acurio, Centro de Salud Pelileo Unidad Anidada. Tungurahua

Médico general

Wendy Yadira Ramos Veintimilla, Hospital Básico de Pelileo. Tungurahua

Médico general

Daniel Asdruval Guevara Leguisano Daniel Asdruval Guevara Leguisano Daniel Asdruval Guevara Leguisano, Hospital Básico de Pelileo. Tungurahua

Médico cirujano

Pablo Ernesto Pino Falconí, Hospital Básico de Pelileo. Tungurahua

Médico general

References

González J, Riancho JA. Osteoporosis. Concepto. Epidemiología. Etiología. Manifestaciones clínicas y complicaciones. Medicine [Internet]. 2006 [citado 14 Ago 2021];9(60):3873-9. Disponible en: https://www.sciencedirect.com/science/article/pii/S0211344906743454?via%3Dihub

Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet [Internet]. 2012 [citado 14 Ago 2021];359(9319):1761-7. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0140673602086579

Kanis JA, Johnell O, Oden A, De Laet C, Jonsson B, Dawson A.. Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone [Internet]. 2002 [citado 14 Ago 2021];30(1):251-8. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S8756328201006536

Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int [Internet]. 2013 [citado 14 Ago 2021];24:23-57. Disponible en: https://archive-ouverte.unige.ch/files/downloads/0/0/0/3/3/6/5/3/unige_33653_attachment01.pdf

Marie PJ, Felsenberg D, Brandi M. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporosis Int [Internet]. 2011 [citado 14 Ago 2021];22:1659-67. Disponible en: https://link.springer.com/article/10.1007/s00198-010-1369-0

Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaSR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol [Internet]. 2007 [citado 14 Ago 2021];74(3):438-47. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006295207002602

Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, et al. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem [Internet]. 2009 [citado 14 Ago 2021];284(1):575-84. Disponible en: https://www.jbc.org/article/S0021-9258(20)68347-8/fulltext

Atkins GJ, Welldon KJ, Halbout P, Findlay DM. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int [Internet]. 2009 [citado 14 Ago 2021];20:653-64. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0728-6

Fromigué O, Haÿ E, Barbara A, Marie PJ. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem [Internet]. 2010 [citado 14 Ago 2021];285(33):25251-8. Disponible en: https://www.jbc.org/article/S0021-9258(20)59909-2/fulltext

Geoffroy V, Chappard D, Marty C, Libouban H, Ostertag A, Lalande A, et al. Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture. Osteoporos [Internet]. 2011; 22:289-97. Disponible en: https://link.springer.com/article/10.1007/s00198-010-1193-6

Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int [Internet]. 2009 [citado 14 Ago 2021];20:1417-28. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0815-8

Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, et al. Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int [Internet]. 2008 [citado 14 Ago 2021];19:1331-41. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0602-6

Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis, Treatment of Peripheral Osteoporosis study. J Clin Endocrinol Metab [Internet]. 2005 [citado 14 Ago 2021];90(5):2816-22. Disponible en: https://academic.oup.com/jcem/article/90/5/2816/2836859?login=true

Kaufman JM, Audran M, Bianchi G, Braga V, Diaz-Curiel M, Francis RM, et al. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab [Internet]. 2013 [citado 14 Ago 2021];98(2):592-601. Disponible en: https://academic.oup.com/jcem/article-abstract/98/2/592/2833105

Reginster JY, Bruyère O, Sawicki A, Roces-Varela A, Fardellone P, et al. Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. Bone [Internet]. 2009 [citado 14 Ago 2021];45(6):1059-64. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S875632820901816X

Bruyère O, Roux C, Badurski J, Isaia G, de Vernejoul MC,et al. Relationship between change in femoral neckbone mineral density and hip fracture incidence duringtreatment with strontium ranelate. Curr Med Res Opin [Internet]. 2007 [citado 14 Ago 2021];23:3041-45. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17967221/

Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Sppector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med [Internet]. 2004 [citado 14 Ago 2021];350:459-68. Disponible en: https://www.nejm.org/doi/full/10.1056/NEJMoa022436

Bruyère O, Collette J, Reginster JY. Strontium ranelate uncouples bone resorption from bone formation in osteoporotic patients with or without clinical risk factors. Arthritis Rheum. 2013;65:S521.

Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol [Internet]. 2009 [citado 14 Ago 2021];157(7):1291-300. Disponible en: https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/j.1476-5381.2009.00305.x

Arlot ME, Jiang Y, Genant HK, Zhao J, Burt-Pichat B, Roux JP, et al. Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res [Internet]. 2008 [citado 14 Ago 2021];23(2):215-22. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/abs/10.1359/jbmr.071012

Rizzoli R, Chapurlat RD, Laroche JM, Krieg MA, Thomas T, Frieling I, et al. Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos Int [Internet]. 2012 [citado 14 Ago 2021];23:305-5. Disponible en: https://link.springer.com/article/10.1007/s00198-011-1758-z

Chavassieux P, Meunier PJ, Roux JP, Portero-Muzy N, Pierre M, Chapurlat R. Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women: randomized comparison to alendronate. J Bone Miner Res [Internet]. 2014 [citado 14 Ago 2021];29(3):618-28. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/full/10.1002/jbmr.2074

Ammann P, Rizzoli R. Strontium ranelate treatment improves bone material level properties in human transiliac bone biopsy specimens. Bone Abstract [Internet]. 2013 [citado 14 Ago 2021];1:S43. Disponible en: http://www.bone-abstracts.org/ba/0001/ba0001PP53.htm

Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, et al. Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: Results of a five-year, randomized, placebo-controlled trial. Arthritis [Internet]. 2008 [citado 14 Ago 2021];58(6):1687-95. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/art.23461

Reginster JY, Kaufman JM, Goemaere S, Devogelaer JP, Benhamou CL, Felsenberg D, et al. Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos Int [Internet]. 2012 [citado 14 Ago 2021];23:1115-22. Disponible en: https://link.springer.com/article/10.1007/s00198-011-1847-z

Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, et al. Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int [Internet]. 2009 [citado 14 Ago 2021];20:1663-73. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0825-6

Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z, et al. Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res [Internet]. 2006 [citado 14 Ago 2021];21(4):536-42. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/full/10.1359/jbmr.060101

Seeman E, Boonen S, Borgström F, Vellas B, Aquino JP, Semler J, et al. Five years treatment with strontium ranelate reduces vertebral and nonvertebral fractures and increases the number and quality of remaining life-years in women over 80 years of age. Bone [Internet]. 2010 [citado 14 Ago 2021];46(4):1038-42. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S8756328209020985

Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci [Internet]. 2001 [citado 14 Ago 2021];56(3):M146-56. Disponible en: https://academic.oup.com/biomedgerontology/article-abstract/56/3/M146/545770

Marquis P, Roux C, de la Loge C, Diaz-Curiel M, Cormier C, Isaia G, et al. Strontium ranelate prevents quality of life impairment in post-menopausal women with established vertebral osteoporosis. Osteoporos Int [Internet]. 2008 [citado 14 Ago 2021];19:503-10. Disponible en: https://link.springer.com/article/10.1007/s00198-007-0464-3

Brun LR, Galich AM, Vega E, Salerni H, Maffei L, Premrou, et al. Strontium ranelate effect on bone mineral density is modified by previous bisphosphonate treatment. Springer-Plus [Internet]. 2014 [citado 14 Ago 2021];3(676). Disponible en: https://springerplus.springeropen.com/articles/10.1186/2193-1801-3-676

Busse B, Jobke B, Hahn M, Priemel M, Niecke M, Seitz S, et al. Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: Matrix incorporation of strontium is accompanied by changes in mineralization and microstructure. Acta Biomater [Internet]. 2010 [citado 14 Ago 2021];6(12):4513-21. Disponible en: https://www.sciencedirect.com/science/article/pii/S1742706110003399

Jobke B, Burghardt AJ, Muche B, Hahn M, Semler J, Amling M, et al. Trabecular reorganization in consecutive iliac crest biopsies when switching from bisphosphonate to strontium ranelate treatment. PLoS One [Internet]. 2011 [citado 14 Ago 2021];6(8):e23638. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023638

European Medicines Agency. Good pharmacovigilance practices. [Internet] [citado 27 Ago 2021]. Disponible: https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/good-pharmacovigilance-practices

European Medicines Agency. Assessment report – periodic safety update report (EPAR - Protelos-H-C-560-PSU31). 2013. [Internet] [citado 27 Ago 2021]. Disponible en: https://www.ema.europa.eu/en/documents/variation-report/protelos-h-c-560-psu-0031-epar-assessment-report-periodic-safety-update-report_en.pdf

Audran M, Jakob FJ, Palacios S, Brandi ML, Bröll H, Hamdy NA, et al. A large prospective European cohort study of patients treated with strontium ranelate and followed up over 3 years. Rheumatol Int [Internet]. 2013 [citado 14 Ago 2021];33:2231-9. Disponible en: https://link.springer.com/article/10.1007%2Fs00296-012-2594-y

Svanström H, Pasternak B, Hviid A. Use of strontium ranelate and risk of acute coronary syndrome: cohort study. Ann Rheum Dis [Internet]. 2014 [citado 14 Ago 2021];73(6):1037-43. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24651624/

Published

2021-10-26

How to Cite

1.
Guevara Acurio AL, Ramos Veintimilla WY, Daniel Asdruval Guevara Leguisano DAGLDAGL, Pino Falconí PE. Therapeutic approaches to osteoporosis. Rev. cuba. de Reumatol. [Internet]. 2021 Oct. 26 [cited 2025 Feb. 22];24(1):e237. Available from: https://revreumatologia.sld.cu/index.php/reumatologia/article/view/953

Issue

Section

Review article

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.